
ndmtk Documentation
Release 0.1.8

Paul Greenberg

Apr 24, 2017

Contents

1 Introduction 3
1.1 Network Discovery and Management Toolkit . 3

1.1.1 Purpose . 3
1.1.2 Audience . 4
1.1.3 Artificial Intelligence (AI) . 4
1.1.4 Structured Data . 4
1.1.5 Workflow Diagram . 5

2 User Guide 7
2.1 Prerequisites . 8
2.2 Builtin Commands . 8
2.3 User-Defined Commands . 8

2.3.1 Per Operating System . 8
2.3.2 Per Individual Host . 9
2.3.3 Specific Tasks . 9

2.4 Exceptions . 9
2.5 Limits . 9
2.6 Data Repository . 10
2.7 Security . 10

2.7.1 SSH Fingerprints . 10
2.7.2 Jumphosts . 10
2.7.3 Multi-Factor Authentication (MFA) . 10

2.8 Examples . 11
2.9 Common Errors . 11

3 Rules Engine 13
3.1 Data Collection Rules . 13

3.1.1 Basic Conditions . 13
3.1.2 Derivatives . 14
3.1.3 No Newline . 15
3.1.4 Success and Error Overwrites . 16
3.1.5 Facts . 16

3.2 Rule Design . 17
3.3 Condition Precedent . 18

4 Access Credentials Management 19
4.1 Ansible Vault . 19

i

4.2 Credentials Structure and Format . 20
4.3 Multi-factor Authentication Internals . 21

5 Reports and Structured Data 23
5.1 JUnit Reporting . 23
5.2 Structure Data . 25
5.3 Status Codes . 26

6 Frequently Asked Questions 29
6.1 Supported Platforms . 29

ii

ndmtk Documentation, Release 0.1.8

Table of Contents:

Contents 1

ndmtk Documentation, Release 0.1.8

2 Contents

CHAPTER 1

Introduction

Table of Contents:

• Network Discovery and Management Toolkit

– Purpose

– Audience

– Artificial Intelligence (AI)

– Structured Data

– Workflow Diagram

Network Discovery and Management Toolkit

Network Discovery and Management Toolkit (ndmtk) makes Ansible work for both Traditional and Software-Defined
Network (SDN) network management.

Purpose

The future of network management lies in the area of Artificial Intelligence. Any network-enabled device will be able
to build connectivity to a remote peer on-demand, without human intervention. The restraint on that ability are the
AI-enabled systems acting as gatekeepers. AI is impossible without ongoing data collection, data analysis, probing,
and modeling. As such, networks of the future need tools to perform the above tasks.

This toolkit is designed to accomplish the data collection piece of the AI puzzle. Specifically, the toolkit is designed
to:

• discover data on network devices and capture the entirety of available data

• configure network devices via SSH, telnet, console, or terminal server

3

ndmtk Documentation, Release 0.1.8

• collect, analyze, and store the data via command-line interactions; it performs data analysisn and, if necessary,
it performs additional data collection and/or device configuration tasks.

Audience

The intended audience of this toolkit are system and network engineers and designers, as well as the researchers
dealing with AI.

Artificial Intelligence (AI)

The toolkit is delivered in a form of an Ansible plugin. However, it could work well with Chef, or any other orchestra-
tion tool. The reason Ansible became a framework of choice is its modularity. The toolkit itself is modular. It allows
extended existing functionality. For example, the plugin does not blindly run pre-defined commands. Rather, it first
collects all of the commands forming the understanding of the function of a particular device in a network. Once the
plugin receives the data, it runs it through its algorithms and determines whether there are any additional command
required to further gather data. That process continues until the algorithms determine that the collection is complete.

The plugin has no required arguments and parameters, because there are a number of default commands available for
various operating systems, e.g. Cisco Nexus OS, Arista EOS, Linux, etc.

Structured Data

Importantly, once the plugin completes its tasks it produces a number of reports in JSON, YAML, and JUnit formats.
These reports provide a map of what was done, where the collected data reside, and what that data is.

4 Chapter 1. Introduction

ndmtk Documentation, Release 0.1.8

Workflow Diagram

1.1. Network Discovery and Management Toolkit 5

ndmtk Documentation, Release 0.1.8

6 Chapter 1. Introduction

CHAPTER 2

User Guide

Table of Contents:

• Prerequisites

• Builtin Commands

• User-Defined Commands

– Per Operating System

– Per Individual Host

– Specific Tasks

• Exceptions

• Limits

• Data Repository

• Security

– SSH Fingerprints

– Jumphosts

– Multi-Factor Authentication (MFA)

• Examples

• Common Errors

Please note that the plugin always collects version and configuration information when mining for network data.

7

ndmtk Documentation, Release 0.1.8

Prerequisites

The plugin requires the presence of two binaries:

• ssh

• expect

The users of the plugin should know YAML., because it is the toolkit’s abstraction format.

The toolkit works on Linux. However, it could work on Windows too. If you are interested in Windows support, please
open an issue.

Back to Top

Builtin Commands

This plugin uses the following approach when determining which commands are availble to run on a remote device.

• First, each device must carry ndmtk_os or os attribute. Based on the value ofthe attribute, the plugin performs
a lookup in files/cli/os/ directory the plugin’s directory inside Python’s site-packages directory.
For example, Cisco ASA firewall must have either ndmtk_os=cisco_asa or os-cisco_asa attribute.

• Then, the plugin will try to locate files/cli/os/cisco_asa.yml file. Once located, the plugin will read
it and collect all of the cli commands associated with Cisco ASA operating system.

Please note, based on the information, the plugin will also record which commands show configuration and version
information, and which commands should be used to disable paging or switch to automation mode.

The disable_defaults option isables default pre-packages commands for various operating systems. It is com-
monly used when configuring a device, as opposed to gathering data of a device.

Back to Top

User-Defined Commands

Per Operating System

The cliset_os_dir points to the path to YAML files containing user-defined commands on per operating system
basis. The plugin will run the commands only if the plugin is able to locate a file matching a remote host’s operating
system in this directory.

For example, if a host’s operating system is cisco_nxos, the plugin will look for cisco_nxos.yml file in this
directory. If the file is found, then the plugin will run the commands it found in the file.

Please note that the plugin runs the commands in addition to any default commands, unless they are disabled with
disable_defaults.

The default commands for various operating systems are located in <python_site_packages>/ndmtk/
files/cli/os directory.

Back to Top

8 Chapter 2. User Guide

http://yaml.org/

ndmtk Documentation, Release 0.1.8

Per Individual Host

The cliset_host_dir points to the path to YAML files containing user-defined commands on per host basis. The
plugin will run the commands only if the plugin is able to locate a file matching a remote host’s hostname in this
directory.

For example, if a host’s hostname is ny-fw01, the plugin will look for ny-fw01.yml file in this directory. If the
file is present and readable, then the plugin will run the commands it finds in the file.

Please note that the plugin runs the commands in addition to any default commands, unless they are disabled with
disable_defaults.

Back to Top

Specific Tasks

Frequently, there is a need to run a specific set of commands for non-data collection purposes, e.g. device configuration.
The cliset_spec points to the path to a single YAML file containing user-defined commands.

As with the previously discussed user-defined commands, the plugin runs the in addition to any default commands,
unless they are disabled with disable_defaults.

Back to Top

Exceptions

The cliset_exc points the path to a single YAML file containing exceptions to both default and user-defined
commands. The root element of the YAML data structure is exceptions. The structure is a list of dictionaries/items.
Each dictionary item must have at least one of the keys: cli, host, and/or os. The keys are strings containing regular
expressions.

The plugin pre-checks each of the commands it has in its queue against the exceptions. If the plugin matches a
command with the cli regular expression, it performs additional host and os regular expression searches, if any.
If the plugin is able to match all regular expressions within a single exception, it marks the command as skipped
and never runs it on the actual device. By default, the plugin search for <ansible_inventory_dir>/files/
ndmtk/exceptions.yml file.

Back to Top

Limits

A user may limit a scope of the commands from any command line set it supplies to the plugin. The user could use
sections option.

For example, if a user wants to run only BGP-related commands on a device, the user would add the following to a
task sections="bgp". This way, the plugin will only execute the commands that have bgp tag attached to them.

Back to Top

2.4. Exceptions 9

ndmtk Documentation, Release 0.1.8

Data Repository

The plugin uses the value supplied with output option to determine where to store the data produced by the plugin.
If a path contains % sign in it, then the plugin performs pre-defined conversions. For example, %h is converted to a
host’s hostname, %H to a host’s FQDN, and %E to epoch timestamp. Please search the plugin’s source code for the full
list of converted characters.

'h': 'hostname',
'p': 'unique_process_id',
'U': os.path.split(os.path.expanduser('~'))[-1],
'Y': str(ts.tm_year).zfill(4),
'm': str(ts.tm_mon).zfill(2),
'd': str(ts.tm_mday).zfill(2),
'H': str(ts.tm_hour).zfill(2),
'M': str(ts.tm_min).zfill(2),
'S': str(ts.tm_sec).zfill(2),
'E': str(int(epoch)),

Back to Top

Security

SSH Fingerprints

If the no_host_key_check option is set to yes, it instructs the plugin to accept SSH fingerprints without valida-
tion, i.e. trust any SSH fingerprint.

Back to Top

Jumphosts

The jumphosts instructs the plugin to access devices via a chain of jumphosts. In enterprise networks, access to
network devices is allowed only from restricted management stations/hosts. This option allows users to run tasks
through these hosts.

Back to Top

Multi-Factor Authentication (MFA)

Recently, enterprise technology users have been moving to multi-factor authentication (MFA). It presents a challenge
to network automation. However, with token_bypass option pointing to the socket of the process with the knowl-
edge iof what that second (multi) factor is, it is no longer an issue.

Back to Top

10 Chapter 2. User Guide

ndmtk Documentation, Release 0.1.8

Examples

The following command instructs Ansible to login to ny-fw01 and collect running configuration from it.

ansible-playbook playbooks/collect_configuration.yml

Alternatively, a user may collect the output of all relevant operating system commands:

ansible-playbook playbooks/collect_all.yml

Additionally, this plugin supports Check Mode (“Dry Mode”). In this mode, the plugin will not attempt to login to
network devices. This mode is used to test for the existence of access credentials.

ansible-playbook playbooks/collect_configuration.yml --check

Another way to use the plugin is to configure network devices. The below Ansible playbook configures ACL on a
Cisco ASA firewall.

ansible-playbook playbooks/configure_acl.yml --check -vvv
ansible-playbook playbooks/configure_acl.yml --vvv

This playbook shows how to collecte data via the chaing of devices, i.e controller => 10.1.1.1, 10.1.1.1
=> 10.1.2.3, 10.1.2.3 => 10.2.3.4 => managed node.

- name: data collection via jumphosts
action: |

ndmtk output="/tmp/jump-data-%Y%m%d%H%M%S"
jumphosts="10.1.1.1,10.1.2.3,10.2.3.4"
no_host_key_check=yes

Back to Top

Common Errors

A user may receive the following error:

fatal: [ny-fw01]: FAILED! => {
"failed": true,
"msg": "The module ndmtk was not found in configured module paths.

Additionally, core modules are missing.
If this is a checkout, run 'git submodule update --init --recursive'
to correct this problem."

}

This is the indication that something is broken with setup.py. The issue maybe caused by the lack of permissions.
Please open an issue.

Back to Top

2.8. Examples 11

ndmtk Documentation, Release 0.1.8

12 Chapter 2. User Guide

CHAPTER 3

Rules Engine

Table of Contents:

• Data Collection Rules

– Basic Conditions

– Derivatives

– No Newline

– Success and Error Overwrites

– Facts

• Rule Design

• Condition Precedent

This page describes the toolkit’s rules engine.

Data Collection Rules

The decision how to collect data from a network device is governed by the rules engine. It is abstructed in the form of
YAML.

Basic Conditions

The following rule applies to any Linux distribution. The purpose of the rule is to discover the paths to all binaries in the
user’s PATH environment variable. The information collected is stored in a reference database with tags binaries
and configuration`.

13

ndmtk Documentation, Release 0.1.8

- description: 'collect the file listing of binaries in PATH'
cli: 'find $(env | grep "^PATH=" | sed "s/PATH=//;s/:/ /g") -maxdepth 10 -type f -

→˓print | sed "s/\/\//\//"'
tags: ['ref:binaries', 'configuration']
saveas: '%h.files.bin.txt'

Later, we could utilize the references in other rules.

For example, there will be no collection of IP addressing information unless ifconfig binary is present.

- description: 'collect ip addressing information via sysctl'
cli: 'ifconfig -a'
tags: ['network']
conditions_match_any:
- 'tag:binaries:.*bin/ifconfig$'

At the same time, the plugin will collect information if ip binary is present:

- description: 'collect ip routing information'
cli: 'ip route'
tags: ['network']
conditions_match_any:
- 'tag:binaries:.*bin/ip$'

Back to Top

Derivatives

In some cases, it is necessary to run follow up commands to discover more data.

The below rule instructs the plugin to read kernel network interface table /proc/net/dev and run follow up
ethtool commands if ethtool is available.

- description: 'collect kernel network interface statistics'
cli: 'cat /proc/net/dev'
tags: ['network', 'test']
saveas: '%h.ifstats.txt'
derivatives:
- os:
- generic_linux
regex:
- pattern: '^\s*(?P<IF_NAME>\S+):'

flags: ['add_cli']
actions:
- description: 'collect network interface driver and hardware settings from <IF_

→˓NAME>'
cli:
- 'ethtool <IF_NAME>'
- 'ethtool --show-pause <IF_NAME>'
- 'ethtool --show-coalesce <IF_NAME>'
- 'ethtool --show-ring <IF_NAME>'
- 'ethtool --driver <IF_NAME>'
- 'ethtool --show-features <IF_NAME>'
- 'ethtool --statistics <IF_NAME>'
- 'ethtool --show-nfc <IF_NAME>'
- 'ethtool --show-ntuple <IF_NAME>'

14 Chapter 3. Rules Engine

ndmtk Documentation, Release 0.1.8

- 'ethtool --show-eee <IF_NAME>'
- 'ethtool --show-priv-flags <IF_NAME>'
- 'ethtool --show-channels <IF_NAME>'
- 'ethtool --show-time-stamping <IF_NAME>'
- 'ethtool --show-permaddr <IF_NAME>'
- 'ethtool --module-info <IF_NAME>'
- 'ethtool --show-eee <IF_NAME>'
saveas: '%h.ethtool.<IF_NAME>.txt'
append: yes
required: ['IF_NAME']
conditions_match_all:
- 'tag:binaries:.*in/ethtool$'
allow_empty_response: no

Back to Top

Similarly, the below rule applies to Cisco NX-OS devices. The plugin run show ip bgp summary vrf all on
a device only if router bgp process is configured. Once collected, the plugin collects BGP neighborship informa-
tion from the output of the command. If the plugin finds a BGP neighbor, it will collect the advertised-routes
and received-routes from that neighbor.

- cli: show ip bgp summary vrf all
tags: ['routing', 'bgp']
conditions_match_any:
- '^router bgp'
derivatives:
- description: 'BGP neighbor details'
os:
- cisco_nxos
regex:
- pattern: 'BGP summary information for VRF (?P<VRF>\S+), address family'

flags: ['purge']
- pattern: '\s*(?P<IP_ADDRESS>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s+\d\s+'

flags: ['add_cli']
actions:
- cli: 'show ip bgp neighbors <IP_ADDRESS> vrf <VRF>'

required: ['IP_ADDRESS', 'VRF']
format: 'txt'

- cli: 'show ip bgp neighbors <IP_ADDRESS> advertised-routes vrf <VRF>'
required: ['IP_ADDRESS', 'VRF']
format: 'txt'

- cli: 'show ip bgp neighbors <IP_ADDRESS> received-routes vrf <VRF>'
required: ['IP_ADDRESS', 'VRF']
format: 'txt'

Back to Top

No Newline

In some cases, there is a need to check the command line options available to a user. Traditionally, a user would do it
with question mark at the end of the user’s request.

Here, the user issues show service-policy inspect ? to get available options. However, when doing so,
the user does not press Enter. The no_newline field mimic the describes behavior. If the field does not exist or if
it is set to no, then the newline character will be appended to the user’s request.

3.1. Data Collection Rules 15

ndmtk Documentation, Release 0.1.8

- description: 'Collect a list of all possible inspection policies.'
cli: 'show service-policy inspect ?'
no_newline: yes
os:
- cisco_asa
tags: ['inspect', 'test']
conditions_match_all:
- '^policy-map\s'
- '^\s+class\s'
- '^\s+inspect\s'
derivatives:
- description: 'Collects information about individual inspection policies'
os:
- cisco_asa
regex:
- pattern: '^\s*(?P<INSPECTION_POLICY_NAME>\S+$)\s+Show'

flags: ['add_cli']
actions:
- description: 'Collects statistics for inspect <INSPECTION_POLICY_NAME> policy'

cli: 'show service-policy inspect <INSPECTION_POLICY_NAME>'
required: ['INSPECTION_POLICY_NAME']
format: 'txt'

Back to Top

Success and Error Overwrites

One of the derivative show service-policy inspect commands produces an error:

show service-policy inspect h323
ERROR: % Incomplete command

In order to avoid an error, a user may add success_if field. This causes the plugin to declare the output to be a
success, despite that it is failing.

- description: 'Collects statistics for inspect <INSPECTION_POLICY_NAME> policy'
cli: 'show service-policy inspect <INSPECTION_POLICY_NAME>'
required: ['INSPECTION_POLICY_NAME']
format: 'txt'
success_if:
- '.*'

Back to Top

Facts

The plugin’s configuration files has sections dedicated to fact discovery based on the outputs related to software and/or
hardware information. For example, CentOS servers have /etc/os-release file.

The contents of the file are as follows:

NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"

16 Chapter 3. Rules Engine

ndmtk Documentation, Release 0.1.8

ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:centos:centos:7"
HOME_URL="https://www.centos.org/"
BUG_REPORT_URL="https://bugs.centos.org/"

CENTOS_MANTISBT_PROJECT="CentOS-7"
CENTOS_MANTISBT_PROJECT_VERSION="7"
REDHAT_SUPPORT_PRODUCT="centos"
REDHAT_SUPPORT_PRODUCT_VERSION="7"

The engine has rules to match against that output:

- pattern: '^NAME="?(?P<os_name>.*)["]?$'
add:
- 'os_class=generic_linux'
strip_quotes: yes

- pattern: '^VERSION_ID="?(?P<os_version>\d+)"?'
strip_quotes: yes

- pattern: '^ID=(?P<os_subclass>\S+)$'
strip_quotes: yes

Please note the strip_quotes key. When plugin discovers its presence, it strips double quotes from the captured
values.

The plugin’s analytics engine adds the metadata in the following format:

facts:
os_class: generic_linux
os_name: CentOS Linux
os_subclass: centos
os_version: '7'

Back to Top

Rule Design

Each command executed by the plugin runs in one of the below modes:

• noop

• analytics

• configure

• pre

• post

Back to Top

3.2. Rule Design 17

ndmtk Documentation, Release 0.1.8

Condition Precedent

The condition_precedent_all is a list of conditions. Each condition in the list is a string. The string must
conform to the following format: item predicate value.

The item is what the toolkit will be looking for in facts dictionary.

The predicate are the type of a predicate used:

• eq: equals (both numeric and string, unless there is a type mismatch)

• ne: equals (both numeric and string, unless there is a type mismatch)

• ge: greater or equal (numeric evaluation)

• gt: greater than (numeric evaluation)

• lt: less than (numeric evaluation)

• le: less or equal (numeric evaluation)

• rgx: regular expression evaluation via match, as opposed to search

The value is variable.

Back to Top

18 Chapter 3. Rules Engine

CHAPTER 4

Access Credentials Management

Table of Contents:

• Ansible Vault

• Credentials Structure and Format

• Multi-factor Authentication Internals

This page explains how the toolkit manages network access credentials.

Ansible Vault

This plugin handles user authentication by way of using user credentials located in Ansible Vault files. By default, the
plugin looks up user credentials in ~/.ansible.vault.yml file. The safe option points to the default location
of the file.

A user creates the file by running ansible-vault create ~/.ansible.vault.yml command. Upon the
creation of the file, the Ansible Vault prompts the user of a password. This password is used to decrypt the content of
the vault.

The encrypted file is a plain text file. The first line of the file contains a header. The header specifies the version of
Ansible Vault, encryption type, and looks like this.

$ANSIBLE_VAULT;1.1;AES256

A user edits the file with ansible-vault edit ~/.ansible.vault.yml command.

A user may save the password to unlock the vault in ~/.ansible.vault.key file. By default, the plugin uses
lockpick option to determine the location of the file unlocking the vault.

For example, the below instruction tells the plugin that the password for the vault is located in /opt/admin/
unlock.key. The authentication credentials for the task are located in /opt/admin/auth.yml.

19

ndmtk Documentation, Release 0.1.8

- name: collect data from network nodes
action: ndmtk output="/tmp/data" safe="/opt/admin/auth.yml" lockpick="/opt/admin/

→˓unlock.key"

Back to Top

Credentials Structure and Format

The expected way to store access credentials is in YAML format. The data structure used is a list of hashes, where
each hash represents a single credentials set.

Each hash in the list contains a subset of the following fields:

• regex (regular expression): if the regular expression in this field in a hash matches the FQDN or short name
of a device, then the hash is preferred over any any other hash having the same or higher priority. However, if
there is no match, then the hash is not used.

• priority (numeric): the field prioritizes the use of credentials. The entry with lower priority is preferred over
the entry with higher priority when multiple entries match a regular expression pattern.

• default (boolean): if this field is present and it is set to yes, then this credential will be used in the absense of
a regex match.

• description (text, optional): it provides an explanation about an entry.

• username

• password

• enable: this credential is used when prompted to provide enable password. currently, there is no distinction
between enable levels.

In the below example a user entered two sets of credentials. The first entry is used for a specific device, i.e. ny-fw01.
The second entry is used by default when there is no regular expression matching network device host name.

credentials:
- regex: ny-fw01

username: admin
password: 'NX23nKz!'
password_enable: '3nKz!NX2'
priority: 1
description: NY-FW01 password

- default: yes
username: greenpau
password: 'My#DefaultPass'
password_enable: 'Enabled#By$Default'
priority: 1
description: my default password

Considerations:

• There should be no default credential with the same priority level.

• There should be no credential with both regex and default fields present

Back to Top

20 Chapter 4. Access Credentials Management

ndmtk Documentation, Release 0.1.8

Multi-factor Authentication Internals

When an Ansible playbook contains tasks related to ndmtk plugin, Ansible invokes ndmtk callback plugin. The
plugin performs lookup the lookup of access credentials in Ansible Vault.

By default, the plugin looks for safe and lockpick task arguments. If they are not defined, the plugin attempts
to read ~/.ansible.vault.yml (safe) and ~/.ansible.vault.key (lockpick) files. The looked up access
credentials are stored in task['args']['credentials'] list and passed to ndmtk action plugin.

The action plugin invokes _load_credentials() function to parse the list. The function returns a list of dictio-
naries.

[
{u'description': u'SDN Production Cisco Nexus Leaf Switches',
u'password': u'pin,token',
u'password_enable': u'pin,token',
u'pin': u'4526',
u'priority': 1,
u'regex': u'^ny-fw02$',
u'token': u'~/token.bypass',
u'username': u'greenpau'},

{u'default': True,
u'description': u'my default password',
u'password': u'POC123',
u'password_enable': u'POC123',
u'priority': 1,
u'username': u'admin'}

]

When the plugin prepares for the connectivity it takes out one access credentials set (FIFO) and puts it in self.
activekey variable.

Later, when prompted for the password by a remote device. It fetches the credentials from that variable using
_get_item_from_key() function.

When a credential set fails, the plugin will lookup additional credentials.

fatal: [ny-fw02]: FAILED! => {
"changed": false,
"data_dir": "/opt/data/ansible/poc-conf-20170221190959/ny-fw02",
"failed": true,
"junit": "/opt/data/ansible/poc-conf-20170221190959/ny-fw02/ny-fw02.junit.xml",
"msg": "authentication failed",
"temp_dir": "/Users/greenpau/.ansible/tmp/ndmtk/56cce459-f869-11e6-94e9-

→˓f45c89b1bb39/56d9c178-f869-11e6-a3a9-f45c89b1bb39/ny-fw02"
}

When dealing with credentials requiring PIN and Soft or Hard Token, a user must provide the path to read tokens via
token key inside of access credentials hash. For example, the below hash instructs the plugin to user PIN plus Token
combination for password. The PIN is 1234 and the token can be found in ~/token.bypass.

- regex: '^ny-fw01$'
username: 'greenpau'
password: 'pin,token'
password_enable: 'pin,token'
token: '~/.token.bypass'
pin: '1234'
priority: 1
description: 'Token-authenticated device'

4.3. Multi-factor Authentication Internals 21

ndmtk Documentation, Release 0.1.8

A user populates the ~/token.bypass file via CLI command. For example, the below command send Token
4562356 to ~/token.bypass. Additionally, the user specifies the amount of time the Token will be active, i.e.
10. The plugin uses the information to determine whether the token is valid or not.

date "+%s;572680;10" > ~/.token.bypass

Back to Top

22 Chapter 4. Access Credentials Management

CHAPTER 5

Reports and Structured Data

Table of Contents:

• JUnit Reporting

• Structure Data

• Status Codes

The important functionality of the toolkit is the ability to produce reports about data collection process in YAML,
JSON, and JUnit formats.

This functionality enables the plugin’s integration with Jenkins, CircleCI, Travis, or any other. Additionally, it provides
the ability to Artificial Intelligence (AI) frameworks to understand what the data is, without doing any heavy-lifting.
In a sense, the structured data available in the reports becomes an anchor.

Back to Top

JUnit Reporting

The plugin produces reports in JUnit XML format on per host basis.

Each of the JUnit files has the following testsuites:

• ndmtk.connect

• ndmtk.execute

• ndmtk.disconnect

For example, the ndmtk.connect testsuite of ny-sw01 has the following information. The information is self
explanatory. Importanly, the plugin captures terminal output during connection establishment, authentication, and
authorization.

23

ndmtk Documentation, Release 0.1.8

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
<testsuite hostname="ny-sw01" name="ndmtk.connect" errors="0" skipped="0" tests="1"
→˓failures="0" time="0.41" timestamp="2017-01-15T14:00:20">
<properties>
<property name="host" value="ny-sw01"/>
<property name="os" value="arista_eos"/>
<property name="output_dir" value="/tmp/test-20170115140020"/>
<property name="on_error" value="continue"/>
<property name="on_prompt" value="abort"/>
<property name="temp_dir" value="/home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-

→˓11e6-87ef-f45c89b1bb39/f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01"/>
<property name="args" value="ssh -o UserKnownHostsFile=/dev/null -o

→˓StrictHostKeyChecking=no -p 8224 -tt admin@localhost"/>
<property name="play_uuid" value="f3814002-db2a-11e6-87ef-f45c89b1bb39"/>
<property name="task_uuid" value="f3934fe8-db2a-11e6-bffd-f45c89b1bb39"/>
<property name="return_code" value="0"/>
<property name="return_status" value="ok"/>
<property name="return_msg" value="ok"/>
<property name="paging_mode" value="configured"/>
<property name="scripting_mode" value="disabled"/>
<property name="prompt_mode" value="disabled"/>
<property name="clisets" value="/lib/python/site-packages/ndmtk/plugins/action/

→˓files/cli/os/arista_eos.yml"/>
</properties>
<testcase name="connect" status="ok" time="0.41">
<system_out><![CDATA[

##
connection establishment log :
/home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/f3934fe8-
→˓db2a-11e6-bffd-f45c89b1bb39/ny-sw01/ny-sw01.log_connect
##

Warning: Permanently added '[localhost]:8224' (ECDSA) to the list of known hosts.
Password:
Last login: Sat Jan 14 15:43:57 2017 from 10.0.2.2
ny-sw01>
ny-sw01#
terminal length 0
Pagination disabled.

]]>
</system_out>
<skipped/>

</testcase>
</testsuite>

The ndmtk.execute contains information about the commands executed by the plugin. Here, the pluging executed
show routing-contex vrf command. Then, based on the output, the plugin collected additional information
about default VRF with show ip route vrf default detail.

<testcase name="Collects default routing context (VRF)" classname="routing, test"
→˓status="ok" time="0.371">
<system_out><![CDATA[
$ show routing-contex vrf
|--> $ show ip route vrf default
|--> $ show ip route vrf default detail

24 Chapter 5. Reports and Structured Data

ndmtk Documentation, Release 0.1.8

]]>
</system_out>
<skipped/>

</testcase>

Back to Top

Structure Data

The below are snippets from the output of ny-sw01.meta.yml file:

Here, after the show vrf was successfully executed, the plugin stored the data in a temporary directory. The output
contained six (6) lines. Based on the output, the plugin captured two follow up commands:

• show ip route vrf management

• show ip route vrf management detail

Next, the command is associated with two tags: routing, vrf. Based on the source field, the source of the
commands is pre-packaged operating system based rules, i.e. os_default.

- _seq: 3
allow_empty_response: false
child_cli_id:
- show ip route vrf management
- show ip route vrf management detail
cli: show vrf
description: Collects VRF information
format: txt
lines: '6'
mode: analytics
path: /tmp/test-20170115140020/ny-sw01/ny-sw01.show.vrf.txt
path_tmp: /home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/

→˓f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01/ny-sw01.show.vrf.txt
sha1: 949faac85f41f62566b8609455ad2e67c87e57cb
source: os_default
status: ok
tags:
- routing
- vrf

Then, there is the status field. It provides various information about the data collection task. Importantly, it has
facts field. It is similar to the data produced by facter tool from Puppet labs.

status:
authenticated: 'yes'
authorized: 'yes'
clisets:
- /usr/lib/python/site-packages/ndmtk/plugins/action/files/cli/os/arista_eos.yml
connect_end: 1484488820999
connect_end_utc: 2017-01-15T14:00:20 UTC
connect_start: 1484488820589
connect_start_utc: 2017-01-15T14:00:20 UTC
connected: 'yes'
disconnect_end: 1484488824087
disconnect_end_utc: 2017-01-15T14:00:24 UTC

5.2. Structure Data 25

ndmtk Documentation, Release 0.1.8

disconnect_start: 1484488824021
disconnect_start_utc: 2017-01-15T14:00:24 UTC
disconnected: 'yes'
facts:
hardware_macaddr: 0800.2756.4f61
memory_free: 2891812 kB
memory_total: 3887680 kB
os_arch: i386
os_class: arista_eos
os_internal_build_id: c6362f13-ae6d-4c88-b5fd-4678d66018ab
os_internal_build_version: 4.17.2F-3696283.4172F
os_name: vEOS
os_vendor: Arista
os_version_major: '4'
os_version_minor: '17'
os_version_patch: 2F
uptime: 21 hours and 18 minutes

paging_mode: configured
prompt_mode: disabled
return_code: 0
return_msg: ok
return_status: ok
scripting_mode: disabled
spawned: 'yes'

task_uuid: f3934fe8-db2a-11e6-bffd-f45c89b1bb39
temp_dir: /home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/
→˓f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01

The plugin uses the facts field when processing output through its Rules Engine.

- description: 'Collects routing table'
cli: 'show ip route vrf all'
tags: ['routing']
conditions_precedent_all:
- 'os_class eq arista_eos'
- 'os_version_major ge 5'

Here, the show ip route vrf all will not run on the device, because facts‘s os_version_major is less
than the os_version_major in the conditions_precedent_all for the rule.

If a user wants to run the show ip route vrf all, the user should change conditions_precedent_all
to:

conditions_precedent_all:
- 'os_class eq arista_eos'
- 'os_version_major ge 4'

Back to Top

Status Codes

Upon the completion of a particular command, the plugin updates the status field of the command. The list of
possible values follows:

• ok: worked as expected

26 Chapter 5. Reports and Structured Data

ndmtk Documentation, Release 0.1.8

• failed

• skipped

• conditional: assigned when entered into the database and has conditions_match or
conditions_precedent_all field associated with a command.

• retry

• unknown: assigned when entered into the database

Back to Top

5.3. Status Codes 27

ndmtk Documentation, Release 0.1.8

28 Chapter 5. Reports and Structured Data

CHAPTER 6

Frequently Asked Questions

Table of Contents:

• Supported Platforms

This page provides answers to commonly asked questions.

Supported Platforms

The plugin currently supports connectivity to the following target operating systems:

• Arista EOS

• Cisco IOS

• Cisco NX-OS

• Cisco IOS-XE

• Cisco IronPort

• Cisco ASA

• Cisco ACS

• Citrix Netscaler OS

• Juniper SRX

• Juniper QFX

• Any Linux Distribution

• Nuage Networks VSC

• PaloAlto PAN-OS

29

ndmtk Documentation, Release 0.1.8

• Any Linux Distribution

Pending development:

• F5 BIG-IP

• Fortinet FortiGate

Back to Top

30 Chapter 6. Frequently Asked Questions

Index

A
Access Credentials, 18

F
Frequently Asked Questions, 27

R
Reports, 22
Rules Engine, 11

T
Table of Contents, 1

U
User Guide, 5

W
Workflow Diagram, 1

31

	Introduction
	Network Discovery and Management Toolkit
	Purpose
	Audience
	Artificial Intelligence (AI)
	Structured Data
	Workflow Diagram

	User Guide
	Prerequisites
	Builtin Commands
	User-Defined Commands
	Per Operating System
	Per Individual Host
	Specific Tasks

	Exceptions
	Limits
	Data Repository
	Security
	SSH Fingerprints
	Jumphosts
	Multi-Factor Authentication (MFA)

	Examples
	Common Errors

	Rules Engine
	Data Collection Rules
	Basic Conditions
	Derivatives
	No Newline
	Success and Error Overwrites
	Facts

	Rule Design
	Condition Precedent

	Access Credentials Management
	Ansible Vault
	Credentials Structure and Format
	Multi-factor Authentication Internals

	Reports and Structured Data
	JUnit Reporting
	Structure Data
	Status Codes

	Frequently Asked Questions
	Supported Platforms

