

ndmtk - Network Discovery and Management Toolkit

Table of Contents:

	Introduction
	Network Discovery and Management Toolkit
	Purpose

	Audience

	Artificial Intelligence (AI)

	Structured Data

	Workflow Diagram

	User Guide
	Prerequisites

	Builtin Commands

	User-Defined Commands
	Per Operating System

	Per Individual Host

	Specific Tasks

	Exceptions

	Limits

	Data Repository

	Security
	SSH Fingerprints

	Jumphosts

	Multi-Factor Authentication (MFA)

	Examples

	Common Errors

	Rules Engine
	Data Collection Rules
	Basic Conditions

	Derivatives

	No Newline

	Success and Error Overwrites

	Facts

	Rule Design

	Condition Precedent

	Access Credentials Management
	Ansible Vault

	Credentials Structure and Format

	Multi-factor Authentication Internals

	Reports and Structured Data
	JUnit Reporting

	Structure Data

	Status Codes

	Frequently Asked Questions
	Supported Platforms

Introduction

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	Network Discovery and Management Toolkit
	Purpose

	Audience

	Artificial Intelligence (AI)

	Structured Data

	Workflow Diagram

Network Discovery and Management Toolkit

Network Discovery and Management Toolkit (ndmtk) makes Ansible work for
both Traditional and Software-Defined Network (SDN) network management.

Purpose

The future of network management lies in the area of Artificial Intelligence.
Any network-enabled device will be able to build connectivity to a remote peer
on-demand, without human intervention. The restraint on that ability are the
AI-enabled systems acting as gatekeepers. AI is impossible without ongoing
data collection, data analysis, probing, and modeling. As such, networks
of the future need tools to perform the above tasks.

This toolkit is designed to accomplish the data collection piece of the AI
puzzle. Specifically, the toolkit is designed to:

	discover data on network devices and capture the entirety of available data

	configure network devices via SSH, telnet, console, or terminal server

	collect, analyze, and store the data via command-line interactions;
it performs data analysisn and, if necessary, it performs additional data
collection and/or device configuration tasks.

Audience

The intended audience of this toolkit are system and network engineers and
designers, as well as the researchers dealing with AI.

Artificial Intelligence (AI)

The toolkit is delivered in a form of an Ansible plugin. However, it
could work well with Chef, or any other orchestration tool. The reason
Ansible became a framework of choice is its modularity. The toolkit itself
is modular. It allows extended existing functionality. For example, the
plugin does not blindly run pre-defined commands. Rather, it first collects
all of the commands forming the understanding of the function of a particular
device in a network. Once the plugin receives the data, it runs it through its
algorithms and determines whether there are any additional command required
to further gather data. That process continues until the algorithms determine
that the collection is complete.

The plugin has no required arguments and parameters, because there are
a number of default commands available for various operating systems,
e.g. Cisco Nexus OS, Arista EOS, Linux, etc.

Structured Data

Importantly, once the plugin completes its tasks it produces a number of reports
in JSON, YAML, and JUnit formats. These reports provide a map of what was done,
where the collected data reside, and what that data is.

Workflow Diagram

[image: Plugin Workflow]

User Guide

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	Prerequisites

	Builtin Commands

	User-Defined Commands
	Per Operating System

	Per Individual Host

	Specific Tasks

	Exceptions

	Limits

	Data Repository

	Security
	SSH Fingerprints

	Jumphosts

	Multi-Factor Authentication (MFA)

	Examples

	Common Errors

Please note that the plugin always collects version and configuration
information when mining for network data.

Prerequisites

The plugin requires the presence of two binaries:

	ssh

	expect

The users of the plugin should know YAML [http://yaml.org/].,
because it is the toolkit’s abstraction format.

The toolkit works on Linux. However, it could work on Windows too.
If you are interested in Windows support, please open an issue.

[image: Back to Top] Back to Top

Builtin Commands

This plugin uses the following approach when determining which commands are
availble to run on a remote device.

	First, each device must carry ndmtk_os or os attribute. Based on
the value ofthe attribute, the plugin performs a lookup in files/cli/os/
directory the plugin’s directory inside Python’s site-packages directory.
For example, Cisco ASA firewall must have either ndmtk_os=cisco_asa or
os-cisco_asa attribute.

	Then, the plugin will try to locate files/cli/os/cisco_asa.yml file. Once
located, the plugin will read it and collect all of the cli commands
associated with Cisco ASA operating system.

Please note, based on the information, the plugin will also record which
commands show configuration and version information, and which commands should
be used to disable paging or switch to automation mode.

The disable_defaults option isables default pre-packages commands for various
operating systems. It is commonly used when configuring a device, as opposed to
gathering data of a device.

[image: Back to Top] Back to Top

User-Defined Commands

Per Operating System

The cliset_os_dir points to the path to YAML files containing user-defined
commands on per operating system basis. The plugin will run the commands only
if the plugin is able to locate a file matching a remote host’s operating
system in this directory.

For example, if a host’s operating system is cisco_nxos, the plugin
will look for cisco_nxos.yml file in this directory. If the file is
found, then the plugin will run the commands it found in the file.

Please note that the plugin runs the commands in addition to any default
commands, unless they are disabled with disable_defaults.

The default commands for various operating systems are located
in <python_site_packages>/ndmtk/files/cli/os directory.

[image: Back to Top] Back to Top

Per Individual Host

The cliset_host_dir points to the path to YAML files containing
user-defined commands on per host basis. The plugin will run the commands
only if the plugin is able to locate a file matching a remote host’s
hostname in this directory.

For example, if a host’s hostname is ny-fw01, the plugin will look for
ny-fw01.yml file in this directory. If the file is present and readable,
then the plugin will run the commands it finds in the file.

Please note that the plugin runs the commands in addition to any default
commands, unless they are disabled with disable_defaults.

[image: Back to Top] Back to Top

Specific Tasks

Frequently, there is a need to run a specific set of commands for non-data
collection purposes, e.g. device configuration. The cliset_spec points
to the path to a single YAML file containing user-defined commands.

As with the previously discussed user-defined commands, the plugin runs the
in addition to any default commands, unless they are disabled with
disable_defaults.

[image: Back to Top] Back to Top

Exceptions

The cliset_exc points the path to a single YAML file containing
exceptions to both default and user-defined commands. The root element
of the YAML data structure is exceptions. The structure is a list of
dictionaries/items. Each dictionary item must have at least one of the keys:
cli, host, and/or os. The keys are strings containing regular
expressions.

The plugin pre-checks each of the commands it has in its queue against the
exceptions. If the plugin matches a command with the cli regular expression,
it performs additional host and os regular expression searches, if any.
If the plugin is able to match all regular expressions within a single exception,
it marks the command as skipped and never runs it on the actual device.
By default, the plugin search for
<ansible_inventory_dir>/files/ndmtk/exceptions.yml file.

[image: Back to Top] Back to Top

Limits

A user may limit a scope of the commands from any command line set it supplies
to the plugin. The user could use sections option.

For example, if a user wants to run only BGP-related commands on a device, the
user would add the following to a task sections="bgp". This way, the
plugin will only execute the commands that have bgp tag attached to them.

[image: Back to Top] Back to Top

Data Repository

The plugin uses the value supplied with output option to determine where
to store the data produced by the plugin. If a path contains % sign in it,
then the plugin performs pre-defined conversions. For example, %h is
converted to a host’s hostname, %H to a host’s FQDN, and %E to epoch
timestamp. Please search the plugin’s source code for the full list of
converted characters.

'h': 'hostname',
'p': 'unique_process_id',
'U': os.path.split(os.path.expanduser('~'))[-1],
'Y': str(ts.tm_year).zfill(4),
'm': str(ts.tm_mon).zfill(2),
'd': str(ts.tm_mday).zfill(2),
'H': str(ts.tm_hour).zfill(2),
'M': str(ts.tm_min).zfill(2),
'S': str(ts.tm_sec).zfill(2),
'E': str(int(epoch)),

[image: Back to Top] Back to Top

Security

SSH Fingerprints

If the no_host_key_check option is set to yes, it instructs the
plugin to accept SSH fingerprints without validation, i.e. trust any SSH
fingerprint.

[image: Back to Top] Back to Top

Jumphosts

The jumphosts instructs the plugin to access devices via a chain of
jumphosts. In enterprise networks, access to network devices is allowed
only from restricted management stations/hosts. This option allows users
to run tasks through these hosts.

[image: Back to Top] Back to Top

Multi-Factor Authentication (MFA)

Recently, enterprise technology users have been moving to multi-factor
authentication (MFA). It presents a challenge to network automation. However,
with token_bypass option pointing to the socket of the process with
the knowledge iof what that second (multi) factor is, it is no longer an
issue.

[image: Back to Top] Back to Top

Examples

The following command instructs Ansible to login to ny-fw01 and
collect running configuration from it.

ansible-playbook playbooks/collect_configuration.yml

Alternatively, a user may collect the output of all relevant operating
system commands:

ansible-playbook playbooks/collect_all.yml

Additionally, this plugin supports Check Mode (“Dry Mode”). In this mode,
the plugin will not attempt to login to network devices. This mode is used
to test for the existence of access credentials.

ansible-playbook playbooks/collect_configuration.yml --check

Another way to use the plugin is to configure network devices. The below
Ansible playbook configures ACL on a Cisco ASA firewall.

ansible-playbook playbooks/configure_acl.yml --check -vvv
ansible-playbook playbooks/configure_acl.yml --vvv

This playbook shows how to collecte data via the chaing of devices, i.e
controller => 10.1.1.1, 10.1.1.1 => 10.1.2.3, 10.1.2.3 => 10.2.3.4 => managed node.

- name: data collection via jumphosts
 action: |
 ndmtk output="/tmp/jump-data-%Y%m%d%H%M%S"
 jumphosts="10.1.1.1,10.1.2.3,10.2.3.4"
 no_host_key_check=yes

[image: Back to Top] Back to Top

Common Errors

A user may receive the following error:

fatal: [ny-fw01]: FAILED! => {
 "failed": true,
 "msg": "The module ndmtk was not found in configured module paths.
 Additionally, core modules are missing.
 If this is a checkout, run 'git submodule update --init --recursive'
 to correct this problem."
}

This is the indication that something is broken with setup.py.
The issue maybe caused by the lack of permissions.
Please open an issue.

[image: Back to Top] Back to Top

Rules Engine

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	Data Collection Rules
	Basic Conditions

	Derivatives

	No Newline

	Success and Error Overwrites

	Facts

	Rule Design

	Condition Precedent

This page describes the toolkit’s rules engine.

Data Collection Rules

The decision how to collect data from a network device is governed by the rules
engine. It is abstructed in the form of YAML.

Basic Conditions

The following rule applies to any Linux distribution. The purpose of the rule is
to discover the paths to all binaries in the user’s PATH environment variable.
The information collected is stored in a reference database with tags binaries
and configuration`.

- description: 'collect the file listing of binaries in PATH'
 cli: 'find $(env | grep "^PATH=" | sed "s/PATH=//;s/:/ /g") -maxdepth 10 -type f -print | sed "s/\/\//\//"'
 tags: ['ref:binaries', 'configuration']
 saveas: '%h.files.bin.txt'

Later, we could utilize the references in other rules.

For example, there will be no collection of IP addressing information unless
ifconfig binary is present.

- description: 'collect ip addressing information via sysctl'
 cli: 'ifconfig -a'
 tags: ['network']
 conditions_match_any:
 - 'tag:binaries:.*bin/ifconfig$'

At the same time, the plugin will collect information if ip binary is present:

- description: 'collect ip routing information'
 cli: 'ip route'
 tags: ['network']
 conditions_match_any:
 - 'tag:binaries:.*bin/ip$'

[image: Back to Top] Back to Top

Derivatives

In some cases, it is necessary to run follow up commands to discover more data.

The below rule instructs the plugin to read kernel network interface table
/proc/net/dev and run follow up ethtool commands if ethtool is
available.

- description: 'collect kernel network interface statistics'
 cli: 'cat /proc/net/dev'
 tags: ['network', 'test']
 saveas: '%h.ifstats.txt'
 derivatives:
 - os:
 - generic_linux
 regex:
 - pattern: '^\s*(?P<IF_NAME>\S+):'
 flags: ['add_cli']
 actions:
 - description: 'collect network interface driver and hardware settings from <IF_NAME>'
 cli:
 - 'ethtool <IF_NAME>'
 - 'ethtool --show-pause <IF_NAME>'
 - 'ethtool --show-coalesce <IF_NAME>'
 - 'ethtool --show-ring <IF_NAME>'
 - 'ethtool --driver <IF_NAME>'
 - 'ethtool --show-features <IF_NAME>'
 - 'ethtool --statistics <IF_NAME>'
 - 'ethtool --show-nfc <IF_NAME>'
 - 'ethtool --show-ntuple <IF_NAME>'
 - 'ethtool --show-eee <IF_NAME>'
 - 'ethtool --show-priv-flags <IF_NAME>'
 - 'ethtool --show-channels <IF_NAME>'
 - 'ethtool --show-time-stamping <IF_NAME>'
 - 'ethtool --show-permaddr <IF_NAME>'
 - 'ethtool --module-info <IF_NAME>'
 - 'ethtool --show-eee <IF_NAME>'
 saveas: '%h.ethtool.<IF_NAME>.txt'
 append: yes
 required: ['IF_NAME']
 conditions_match_all:
 - 'tag:binaries:.*in/ethtool$'
 allow_empty_response: no

[image: Back to Top] Back to Top

Similarly, the below rule applies to Cisco NX-OS devices. The plugin
run show ip bgp summary vrf all on a device only if router bgp
process is configured. Once collected, the plugin collects BGP
neighborship information from the output of the command. If the plugin
finds a BGP neighbor, it will collect the advertised-routes and
received-routes from that neighbor.

- cli: show ip bgp summary vrf all
 tags: ['routing', 'bgp']
 conditions_match_any:
 - '^router bgp'
 derivatives:
 - description: 'BGP neighbor details'
 os:
 - cisco_nxos
 regex:
 - pattern: 'BGP summary information for VRF (?P<VRF>\S+), address family'
 flags: ['purge']
 - pattern: '\s*(?P<IP_ADDRESS>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\s+\d\s+'
 flags: ['add_cli']
 actions:
 - cli: 'show ip bgp neighbors <IP_ADDRESS> vrf <VRF>'
 required: ['IP_ADDRESS', 'VRF']
 format: 'txt'
 - cli: 'show ip bgp neighbors <IP_ADDRESS> advertised-routes vrf <VRF>'
 required: ['IP_ADDRESS', 'VRF']
 format: 'txt'
 - cli: 'show ip bgp neighbors <IP_ADDRESS> received-routes vrf <VRF>'
 required: ['IP_ADDRESS', 'VRF']
 format: 'txt'

[image: Back to Top] Back to Top

No Newline

In some cases, there is a need to check the command line options available to
a user. Traditionally, a user would do it with question mark at the end of the
user’s request.

Here, the user issues show service-policy inspect ? to get available options.
However, when doing so, the user does not press Enter. The no_newline field
mimic the describes behavior. If the field does not exist or if it is set to
no, then the newline character will be appended to the user’s request.

- description: 'Collect a list of all possible inspection policies.'
 cli: 'show service-policy inspect ?'
 no_newline: yes
 os:
 - cisco_asa
 tags: ['inspect', 'test']
 conditions_match_all:
 - '^policy-map\s'
 - '^\s+class\s'
 - '^\s+inspect\s'
 derivatives:
 - description: 'Collects information about individual inspection policies'
 os:
 - cisco_asa
 regex:
 - pattern: '^\s*(?P<INSPECTION_POLICY_NAME>\S+$)\s+Show'
 flags: ['add_cli']
 actions:
 - description: 'Collects statistics for inspect <INSPECTION_POLICY_NAME> policy'
 cli: 'show service-policy inspect <INSPECTION_POLICY_NAME>'
 required: ['INSPECTION_POLICY_NAME']
 format: 'txt'

[image: Back to Top] Back to Top

Success and Error Overwrites

One of the derivative show service-policy inspect commands produces an error:

show service-policy inspect h323
ERROR: % Incomplete command

In order to avoid an error, a user may add success_if field. This causes
the plugin to declare the output to be a success, despite that it is failing.

- description: 'Collects statistics for inspect <INSPECTION_POLICY_NAME> policy'
 cli: 'show service-policy inspect <INSPECTION_POLICY_NAME>'
 required: ['INSPECTION_POLICY_NAME']
 format: 'txt'
 success_if:
 - '.*'

[image: Back to Top] Back to Top

Facts

The plugin’s configuration files has sections dedicated to fact discovery based
on the outputs related to software and/or hardware information. For example,
CentOS servers have /etc/os-release file.

The contents of the file are as follows:

NAME="CentOS Linux"
VERSION="7 (Core)"
ID="centos"
ID_LIKE="rhel fedora"
VERSION_ID="7"
PRETTY_NAME="CentOS Linux 7 (Core)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:centos:centos:7"
HOME_URL="https://www.centos.org/"
BUG_REPORT_URL="https://bugs.centos.org/"

CENTOS_MANTISBT_PROJECT="CentOS-7"
CENTOS_MANTISBT_PROJECT_VERSION="7"
REDHAT_SUPPORT_PRODUCT="centos"
REDHAT_SUPPORT_PRODUCT_VERSION="7"

The engine has rules to match against that output:

- pattern: '^NAME="?(?P<os_name>.*)["]?$'
 add:
 - 'os_class=generic_linux'
 strip_quotes: yes
- pattern: '^VERSION_ID="?(?P<os_version>\d+)"?'
 strip_quotes: yes
- pattern: '^ID=(?P<os_subclass>\S+)$'
 strip_quotes: yes

Please note the strip_quotes key. When plugin discovers its presence, it
strips double quotes from the captured values.

The plugin’s analytics engine adds the metadata in the following format:

facts:
 os_class: generic_linux
 os_name: CentOS Linux
 os_subclass: centos
 os_version: '7'

[image: Back to Top] Back to Top

Rule Design

Each command executed by the plugin runs in one of the below modes:

	noop

	analytics

	configure

	pre

	post

[image: Back to Top] Back to Top

Condition Precedent

The condition_precedent_all is a list of conditions. Each condition in the
list is a string. The string must conform to the following format:
item predicate value.

The item is what the toolkit will be looking for in facts dictionary.

The predicate are the type of a predicate used:

	eq: equals (both numeric and string, unless there is a type mismatch)

	ne: equals (both numeric and string, unless there is a type mismatch)

	ge: greater or equal (numeric evaluation)

	gt: greater than (numeric evaluation)

	lt: less than (numeric evaluation)

	le: less or equal (numeric evaluation)

	rgx: regular expression evaluation via match, as opposed to search

The value is variable.

[image: Back to Top] Back to Top

Access Credentials Management

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	Ansible Vault

	Credentials Structure and Format

	Multi-factor Authentication Internals

This page explains how the toolkit manages network access credentials.

Ansible Vault

This plugin handles user authentication by way of using user credentials located in
Ansible Vault files. By default, the plugin looks up user credentials in
~/.ansible.vault.yml file. The safe option points to the default location of
the file.

A user creates the file by running ansible-vault create ~/.ansible.vault.yml
command. Upon the creation of the file, the Ansible Vault prompts the user of a
password. This password is used to decrypt the content of the vault.

The encrypted file is a plain text file. The first line of the file contains a header.
The header specifies the version of Ansible Vault, encryption type, and looks like this.

$ANSIBLE_VAULT;1.1;AES256

A user edits the file with ansible-vault edit ~/.ansible.vault.yml command.

A user may save the password to unlock the vault in ~/.ansible.vault.key file.
By default, the plugin uses lockpick option to determine the location of the
file unlocking the vault.

For example, the below instruction tells the plugin that the password for the vault
is located in /opt/admin/unlock.key. The authentication credentials for the task
are located in /opt/admin/auth.yml.

- name: collect data from network nodes
 action: ndmtk output="/tmp/data" safe="/opt/admin/auth.yml" lockpick="/opt/admin/unlock.key"

[image: Back to Top] Back to Top

Credentials Structure and Format

The expected way to store access credentials is in YAML format. The data structure
used is a list of hashes, where each hash represents a single credentials set.

Each hash in the list contains a subset of the following fields:

	regex (regular expression): if the regular expression in this field in a hash
matches the FQDN or short name of a device, then the hash is preferred over any
any other hash having the same or higher priority. However, if there is no match,
then the hash is not used.

	priority (numeric): the field prioritizes the use of credentials. The entry with
lower priority is preferred over the entry with higher priority when multiple entries
match a regular expression pattern.

	default (boolean): if this field is present and it is set to yes, then this
credential will be used in the absense of a regex match.

	description (text, optional): it provides an explanation about an entry.

	username

	password

	enable: this credential is used when prompted to provide enable password.
currently, there is no distinction between enable levels.

In the below example a user entered two sets of credentials. The first entry is used
for a specific device, i.e. ny-fw01. The second entry is used by default when there
is no regular expression matching network device host name.

credentials:
- regex: ny-fw01
 username: admin
 password: 'NX23nKz!'
 password_enable: '3nKz!NX2'
 priority: 1
 description: NY-FW01 password
- default: yes
 username: greenpau
 password: 'My#DefaultPass'
 password_enable: 'Enabled#By$Default'
 priority: 1
 description: my default password

Considerations:

	There should be no default credential with the same priority level.

	There should be no credential with both regex and default fields present

[image: Back to Top] Back to Top

Multi-factor Authentication Internals

When an Ansible playbook contains tasks related to ndmtk plugin, Ansible
invokes ndmtk callback plugin. The plugin performs lookup the lookup of
access credentials in Ansible Vault.

By default, the plugin looks for safe and lockpick task arguments. If they
are not defined, the plugin attempts to read ~/.ansible.vault.yml (safe) and
~/.ansible.vault.key (lockpick) files. The looked up access credentials are stored
in task['args']['credentials'] list and passed to ndmtk action plugin.

The action plugin invokes _load_credentials() function to parse the list.
The function returns a list of dictionaries.

[
 {u'description': u'SDN Production Cisco Nexus Leaf Switches',
 u'password': u'pin,token',
 u'password_enable': u'pin,token',
 u'pin': u'4526',
 u'priority': 1,
 u'regex': u'^ny-fw02$',
 u'token': u'~/token.bypass',
 u'username': u'greenpau'},
 {u'default': True,
 u'description': u'my default password',
 u'password': u'POC123',
 u'password_enable': u'POC123',
 u'priority': 1,
 u'username': u'admin'}
]

When the plugin prepares for the connectivity it takes out one access
credentials set (FIFO) and puts it in self.activekey variable.

Later, when prompted for the password by a remote device. It fetches the
credentials from that variable using _get_item_from_key() function.

When a credential set fails, the plugin will lookup additional credentials.

fatal: [ny-fw02]: FAILED! => {
 "changed": false,
 "data_dir": "/opt/data/ansible/poc-conf-20170221190959/ny-fw02",
 "failed": true,
 "junit": "/opt/data/ansible/poc-conf-20170221190959/ny-fw02/ny-fw02.junit.xml",
 "msg": "authentication failed",
 "temp_dir": "/Users/greenpau/.ansible/tmp/ndmtk/56cce459-f869-11e6-94e9-f45c89b1bb39/56d9c178-f869-11e6-a3a9-f45c89b1bb39/ny-fw02"
}

When dealing with credentials requiring PIN and Soft or Hard Token, a user
must provide the path to read tokens via token key inside of access
credentials hash. For example, the below hash instructs the plugin to
user PIN plus Token combination for password. The PIN is 1234 and
the token can be found in ~/token.bypass.

- regex: '^ny-fw01$'
 username: 'greenpau'
 password: 'pin,token'
 password_enable: 'pin,token'
 token: '~/.token.bypass'
 pin: '1234'
 priority: 1
 description: 'Token-authenticated device'

A user populates the ~/token.bypass file via CLI command. For example, the
below command send Token 4562356 to ~/token.bypass. Additionally, the user
specifies the amount of time the Token will be active, i.e. 10. The plugin
uses the information to determine whether the token is valid or not.

date "+%s;572680;10" > ~/.token.bypass

[image: Back to Top] Back to Top

Reports and Structured Data

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	JUnit Reporting

	Structure Data

	Status Codes

The important functionality of the toolkit is the ability to produce
reports about data collection process in YAML, JSON, and JUnit formats.

This functionality enables the plugin’s integration with Jenkins, CircleCI,
Travis, or any other. Additionally, it provides the ability to Artificial
Intelligence (AI) frameworks to understand what the data is, without doing
any heavy-lifting. In a sense, the structured data available in the
reports becomes an anchor.

[image: Back to Top] Back to Top

JUnit Reporting

The plugin produces reports in JUnit XML format on per host basis.

Each of the JUnit files has the following testsuites:

	ndmtk.connect

	ndmtk.execute

	ndmtk.disconnect

For example, the ndmtk.connect testsuite of ny-sw01 has the following information.
The information is self explanatory. Importanly, the plugin captures terminal output
during connection establishment, authentication, and authorization.

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite hostname="ny-sw01" name="ndmtk.connect" errors="0" skipped="0" tests="1" failures="0" time="0.41" timestamp="2017-01-15T14:00:20">
 <properties>
 <property name="host" value="ny-sw01"/>
 <property name="os" value="arista_eos"/>
 <property name="output_dir" value="/tmp/test-20170115140020"/>
 <property name="on_error" value="continue"/>
 <property name="on_prompt" value="abort"/>
 <property name="temp_dir" value="/home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01"/>
 <property name="args" value="ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -p 8224 -tt admin@localhost"/>
 <property name="play_uuid" value="f3814002-db2a-11e6-87ef-f45c89b1bb39"/>
 <property name="task_uuid" value="f3934fe8-db2a-11e6-bffd-f45c89b1bb39"/>
 <property name="return_code" value="0"/>
 <property name="return_status" value="ok"/>
 <property name="return_msg" value="ok"/>
 <property name="paging_mode" value="configured"/>
 <property name="scripting_mode" value="disabled"/>
 <property name="prompt_mode" value="disabled"/>
 <property name="clisets" value="/lib/python/site-packages/ndmtk/plugins/action/files/cli/os/arista_eos.yml"/>
 </properties>
 <testcase name="connect" status="ok" time="0.41">
 <system_out><![CDATA[
##
connection establishment log :
/home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01/ny-sw01.log_connect
##

Warning: Permanently added '[localhost]:8224' (ECDSA) to the list of known hosts.
Password:
Last login: Sat Jan 14 15:43:57 2017 from 10.0.2.2
ny-sw01>
ny-sw01#
terminal length 0
Pagination disabled.

]]>
 </system_out>
 <skipped/>
 </testcase>
 </testsuite>

The ndmtk.execute contains information about the commands executed by the plugin.
Here, the pluging executed show routing-contex vrf command. Then, based on the
output, the plugin collected additional information about default VRF with
show ip route vrf default detail.

<testcase name="Collects default routing context (VRF)" classname="routing, test" status="ok" time="0.371">
 <system_out><![CDATA[
 $ show routing-contex vrf
 |--> $ show ip route vrf default
 |--> $ show ip route vrf default detail

]]>
 </system_out>
 <skipped/>
</testcase>

[image: Back to Top] Back to Top

Structure Data

The below are snippets from the output of ny-sw01.meta.yml file:

Here, after the show vrf was successfully executed, the plugin
stored the data in a temporary directory. The output contained six (6) lines.
Based on the output, the plugin captured two follow up commands:

	show ip route vrf management

	show ip route vrf management detail

Next, the command is associated with two tags: routing, vrf.
Based on the source field, the source of the commands is pre-packaged
operating system based rules, i.e. os_default.

- _seq: 3
 allow_empty_response: false
 child_cli_id:
 - show ip route vrf management
 - show ip route vrf management detail
 cli: show vrf
 description: Collects VRF information
 format: txt
 lines: '6'
 mode: analytics
 path: /tmp/test-20170115140020/ny-sw01/ny-sw01.show.vrf.txt
 path_tmp: /home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01/ny-sw01.show.vrf.txt
 sha1: 949faac85f41f62566b8609455ad2e67c87e57cb
 source: os_default
 status: ok
 tags:
 - routing
 - vrf

Then, there is the status field. It provides various information about the data
collection task. Importantly, it has facts field. It is similar to the data produced
by facter tool from Puppet labs.

status:
 authenticated: 'yes'
 authorized: 'yes'
 clisets:
 - /usr/lib/python/site-packages/ndmtk/plugins/action/files/cli/os/arista_eos.yml
 connect_end: 1484488820999
 connect_end_utc: 2017-01-15T14:00:20 UTC
 connect_start: 1484488820589
 connect_start_utc: 2017-01-15T14:00:20 UTC
 connected: 'yes'
 disconnect_end: 1484488824087
 disconnect_end_utc: 2017-01-15T14:00:24 UTC
 disconnect_start: 1484488824021
 disconnect_start_utc: 2017-01-15T14:00:24 UTC
 disconnected: 'yes'
 facts:
 hardware_macaddr: 0800.2756.4f61
 memory_free: 2891812 kB
 memory_total: 3887680 kB
 os_arch: i386
 os_class: arista_eos
 os_internal_build_id: c6362f13-ae6d-4c88-b5fd-4678d66018ab
 os_internal_build_version: 4.17.2F-3696283.4172F
 os_name: vEOS
 os_vendor: Arista
 os_version_major: '4'
 os_version_minor: '17'
 os_version_patch: 2F
 uptime: 21 hours and 18 minutes
 paging_mode: configured
 prompt_mode: disabled
 return_code: 0
 return_msg: ok
 return_status: ok
 scripting_mode: disabled
 spawned: 'yes'
task_uuid: f3934fe8-db2a-11e6-bffd-f45c89b1bb39
temp_dir: /home/greenpau/.ansible/tmp/ndmtk/f3814002-db2a-11e6-87ef-f45c89b1bb39/f3934fe8-db2a-11e6-bffd-f45c89b1bb39/ny-sw01

The plugin uses the facts field when processing output through its Rules Engine.

- description: 'Collects routing table'
 cli: 'show ip route vrf all'
 tags: ['routing']
 conditions_precedent_all:
 - 'os_class eq arista_eos'
 - 'os_version_major ge 5'

Here, the show ip route vrf all will not run on the device, because facts‘s os_version_major
is less than the os_version_major in the conditions_precedent_all for the rule.

If a user wants to run the show ip route vrf all, the user should change conditions_precedent_all to:

conditions_precedent_all:
- 'os_class eq arista_eos'
- 'os_version_major ge 4'

[image: Back to Top] Back to Top

Status Codes

Upon the completion of a particular command, the plugin updates the status field of the command.
The list of possible values follows:

	ok: worked as expected

	failed

	skipped

	conditional: assigned when entered into the database and has conditions_match
or conditions_precedent_all field associated with a command.

	retry

	unknown: assigned when entered into the database

[image: Back to Top] Back to Top

Frequently Asked Questions

[image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

Table of Contents:

	Supported Platforms

This page provides answers to commonly asked questions.

Supported Platforms

The plugin currently supports connectivity to the following target operating systems:

	Arista EOS

	Cisco IOS

	Cisco NX-OS

	Cisco IOS-XE

	Cisco IronPort

	Cisco ASA

	Cisco ACS

	Citrix Netscaler OS

	Juniper SRX

	Juniper QFX

	Any Linux Distribution

	Nuage Networks VSC

	PaloAlto PAN-OS

	Any Linux Distribution

Pending development:

	F5 BIG-IP

	Fortinet FortiGate

[image: Back to Top] Back to Top

Index

 A
 | F
 | R
 | T
 | U
 | W

A

 	
 	Access Credentials

F

 	
 	Frequently Asked Questions

R

 	
 	Reports

 	
 	Rules Engine

T

 	
 	Table of Contents

U

 	
 	User Guide

W

 	
 	Workflow Diagram

 [image: GitHub] [https://badge.fury.io/gh/greenpau%2Fndmtk] [image: CircleCI] [https://circleci.com/gh/greenpau/ndmtk] [image: PyPi version] [https://badge.fury.io/py/ndmtk] [image: Documentation Status] [http://ndmtk.readthedocs.io/]

 _static/up-pressed.png

_static/comment-bright.png

_images/ndmtk.png
Credentials Data Analysis
Vault Functions Network Discovery and

Management Toolkit

e 5 7 Switches

/ — Routers
-
-
- Expect — — —Console — —
Te/,,et Firewalls
~ S
\ \ " 'V >
! 5 >0>
(optional) &\ ©%
AN
pass-through Jump Host N Load
\ _Balancers
N\
Telnet _
Generic
SSH Proxy Network
Devices

Inventory Playbooks

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_images/arrow_up.png

nav.xhtml

 Table of Contents

 		ndmtk - Network Discovery and Management Toolkit

 		Introduction

 		Network Discovery and Management Toolkit

 		Purpose

 		Audience

 		Artificial Intelligence (AI)

 		Structured Data

 		Workflow Diagram

 		User Guide

 		Prerequisites

 		Builtin Commands

 		User-Defined Commands

 		Per Operating System

 		Per Individual Host

 		Specific Tasks

 		Exceptions

 		Limits

 		Data Repository

 		Security

 		SSH Fingerprints

 		Jumphosts

 		Multi-Factor Authentication (MFA)

 		Examples

 		Common Errors

 		Rules Engine

 		Data Collection Rules

 		Basic Conditions

 		Derivatives

 		No Newline

 		Success and Error Overwrites

 		Facts

 		Rule Design

 		Condition Precedent

 		Access Credentials Management

 		Ansible Vault

 		Credentials Structure and Format

 		Multi-factor Authentication Internals

 		Reports and Structured Data

 		JUnit Reporting

 		Structure Data

 		Status Codes

 		Frequently Asked Questions

 		Supported Platforms

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/images/ndmtk.png
Credentials Data Analysis
Vault Functions Network Discovery and

Management Toolkit

e 5 7 Switches

/ — Routers
-
-
- Expect — — —Console — —
Te/,,et Firewalls
~ S
\ \ " 'V >
! 5 >0>
(optional) &\ ©%
AN
pass-through Jump Host N Load
\ _Balancers
N\
Telnet _
Generic
SSH Proxy Network
Devices

Inventory Playbooks

_static/images/ndmtk_pypi.png
Credentials
Vault

Inventory

Data Analysis
Functions

Network Discovery and
Management Toolkit

Switches

= - Routers
— — —Console — —
NN 7
\ N ey Firewalls
\ N =
[RO
(optional) K ~
pass-through Jump Host N load
N\ _Balancers
.
= Telnet
VN Sener
SSH Proxy Natwerk
Devices

Playbooks

_static/images/ndmtk.code.submission.workflow.png
——

master Branch

Code Submission Workflow

soccooccooOGPOIPFOOOCOOOOGPST S

u
Upstream

S—

master Branch

u
Origin

master Branch

u
Localhost

ansible/ansible greenpau/ansible greenpau/ansible

/\ ‘
ey
@ Branch)

master Branch

|

S~ — T
———— "
Upstream < TR mychange 4. | mychange
Branch ﬂ‘ Branch
ansible/ansible/pull/X €--------==--- Origin Localhost
greenpau/mychange greenpau/mychange

Where X is a number
The number increments

with each pull request

_static/images/arrow_up.png

